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We study electronic response in a one-dimensional nonlinear lattice in terms of a transmission
problem where the nonlinear Schrodinger equation of the tight-binding form is considered to de-
scribe the motion of the electrons. We introduce an area-preserving nonlinear mapping for the
transmission problem. We then analyze this mapping in the context of nonlinear dynamical theory,
and discuss the results in terms of physical quantities describing the transmission process. We show
a “phase diagram” in terms of the electronic energy and nonlinear coupling constant for the solu-
tions which contribute to the transmission. We also calculate the transmission coefficients as func-
tions of the nonlinear coupling constant. Our results demonstrate how interesting properties, such
as multistability and noise, occur in the electronic response of our problem. Several physical models
involving electronic or optical processes are considered as systems that might be relevant to our

study.

I. INTRODUCTION

The one-dimensional nonlinear Schrédinger equation
has appeared in a number of theoretical models in
condensed-matter physics. These include, among others,
the Holstein molecular-crystal chain! and adiabatic
theories involving short-range electron-phonon interac-
tion in quasi-one-dimensional systems in general,?
nonlinear-optical responses in superlattices formed by
dielectric or magnetic slabs,’ and, most recently, the
mean-field theory of a periodic array of twinning planes
in the high-T, superconducting oxides.* The existence of
fundamental periodic modulations in these models often
leads to a one-dimensional time-independent nonlinear
Schrédinger equation of the tight-binding form:

~ Y, =¥, 1 —AlY, P, =EY, , (1)

where E and A are the energy of the wave and the non-
linear coupling constant, respectively, and ¥, can be the
electron wave function, the effective electromagnetic
field, or the superconductivity order parameter at the nth
site of the lattice (superlattice). Typically, in search for
solutions, the continuum approximation is applied to Eq.
(1), and the resulting differential equation can be integrat-
ed. The solutions are then matched to the boundary con-
ditions of the problem. Such a procedure is justified in
cases where the solutions are slowly varying functions in
space, on the scale of the lattice constant. However,
there are circumstances in which the interplay of the
effects of nonlinearity and periodic modulation has physi-
cal significance, such as pinning of the field by the lat-
tice.® On the other hand, the discrete nonlinear
Schrodinger equation [Eq. (1)] has the form of a non-
linear dynamical mapping, with n playing the role of
discrete time. More precisely, it belongs to the class of
area-preserving nonlinear mappings on the Poincaré sur-
face of section describing the nonlinear dynamics of
Hamiltonian systems. It is well known that such non-
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linear mappings can have rich and complex behavior, due
to their nonintegrable character.®”!3 Thus it is interest-
ing to study, in simple physical systems, the consequence
of nonintegrable nonlinear dynamics. We have studied
elsewhere!* the properties of Eq. (1) in both real and com-
plex domains, using nonlinear dynamical methods, and
have discussed their physical implications for an infinite
lattice chain. Here we consider the problem of transmis-
sion through a one-dimensional nonlinear lattice chain of
finite length. Specifically, we consider a finite nonlinear
sample embedded in an infinite linear lattice chain, and
electrons in the linear part of the system arriving at one
end of the nonlinear sample, inducing excitations in the
nonlinear medium (Fig. 1). Under certain conditions,
such responses may be able to propagate through the
nonlinear sample and emerge as a transmitted wave.
After the process reached a static limit, the resulting sta-
tionary electron wave function in the nonlinear medium
can be described by a time-independent nonlinear
Schrodinger equation in the one-electron picture. As-
suming the linear medium is described by the same tight-
binding Schrodinger equation with A=0, so that wave
function there takes the form of a Bloch wave, and con-
sidering an incident wave coming from the left towards
the nonlinear sample extending over N lattice sites, we
define our transmission problem as the following (see Fig.
1):

Y, =Rpe™+R e *" n<0 (2a)

_¢n+l—¢n—l_}\'|¢n‘2¢n:E¢n’ 0<n=N (2b)

Y, =Te™, n>N . (2¢)
In Egs. (2) we require |Ry|?>=|R;|>+ T? to satisfy the
conservation of probability current and choose the
overall constant phase for the wave functions so that T is
real.

We first explain the physical meaning of Egs. (2) and
our strategy for solving it. For the typical physical model
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FIG. 1. Nonlinear transmission as defined by Eq. (2). The
nonlinear medium (A >0) extends from n=0 to n=N. There
are incoming and reflected waves in the linear medium (A=0)
to the left of the nonlinear sample (n <0), whereas only the out-
going wave exists on the other side (n > N) of the nonlinear
sample.

related to the nonlinear sample, we mention the large-
polaron regime of the Holstein molecular-crystal chain,}
where 1, represents the wave function of a single excess
electron at the Fermi level E, and the cubic nonlinear
term in Eq. (1), Aly,|*4,, originates from the static
short-range electron-phonon interaction. It has been
shown! that the ground state for the electron is in the
form of localized polaron with energy in the gap of the
corresponding decoupled system, and there are an infinite
hierarchy of excited states above the ground state. These
excitations can be coupled to the incident electron and
hence contribute to the transmission process. We also
note that the Holstein model can equally describe an ex-
cess hole in the molecular-crystal chain, provided A is
negative and that E and k refer to the energy and wave
vector of the hole, respectively. Thus, we will restrict our
study to the electron case only, i.e., A>0. The linear
transmission problem [Egs. (2) with A=0], even in the
presence of random potentials, is well understood. The
transmission coefficient = T2/|R,|? vanishes, except for
E in the energy band, i.e, —2 <E =<2, where E = —2cosk
and k is the Bloch wave vector. In order to probe the
nonlinear response for all possible energies in our model,
we allow E to vary outside [ —2,2]. This might be real-
ized if we consider proper interface structures between
the nonlinear sample and the linear leads, similar to that
commonly adopted for metal-semiconductor inter-
faces.'>!® The Fermi level E is then determined by the
electron reservoir in the metal leads. However, in writing
Egs. (2) we have ignored for simplicity the regions dom-
inated by space-charge fluctuations and surface states, as
well as the associated effects such as band bending. Al-
ternatively, one may suggest that there exists near the in-
terface a linear region of a length small compared to the
nonlinear sample, covering the space-charge extension,
and the linear transfer-matrix can be used to move into
the nonlinear region. This will not change the results
qualitatively. With these considerations, one should
choose independently the values of E and k in Egs. (2).
However, we restrict ourselves to the following two cases,
according to whether |E|<2: (a) E=—2cosk for
—2<E=<2, and (b) for E<—2, a fixed value for the
wave vector is used, namely k =27 /100. It will be clear
that the two cases represent two different regimes of the
transmission problem, while (b) is particularly interesting
since the transmission there is due entirely to the non-
linearity and its nature is truly nonperturbative (see dis-
cussions in Sec. III).
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In the next section we derive a nonlinear mapping for
the transmission problem and study its properties in the
context of nonlinear dynamics. This provides us with in-
formation about the wave functions in the nonlinear sam-
ple and the relationship between the intensities of the in-
cident wave |R,|? and the transmitted wave T2, i.e., the
nonlinear response, as well as their dependence on the pa-
rameters E, k, and A. As will be shown later, ,, for
0<n <N, can be uniquely determined by the output
Te'*", n > N, rather than by the input R,. The overall be-
havior of the transmission can be summarized in terms of
a “phase diagram” on the (E, AT?) plane (see Fig. 2 and
discussions in Sec. III), where a sharp and complex-
structured boundary is seen to separate the shaded region
corresponding to the bounded wave functions in the non-
linear sample, contributing to transmission, from that of
diverging wave functions (i.e., infinite input). A special
case of such a “phase diagram,” with —2<FE <2, was
first discovered by Delyon and co-workers.!” By intro-
ducing a nonlinear dynamical mapping for the complex
wave functions, we are able to study the “phase diagram”
and the associated structures in the transmission
coefficient . Moreover, we found chaotic behavior of the
electronic states (as a direct consequence of the nonin-
tegrability of the nonlinear mapping), contrary to the
conclusions of the previous authors.!”'® These detailed
results and their implications are presented and discussed
in Sec. II1.

II. NONLINEAR DYNAMICAL MAPPING
ON THE PLANE

Writing ¢, =x,, +iy,,, Eq. (1) becomes
—xn+l—xn—l_}‘(x3+ynz)xn :Exn ’ (3a)

_yn+1_yn~—1_}"(xl%+ynz)yn:Eyn . (3b)

Energy E

0.0 1.0 20
Coupling Constant X\

FIG. 2. “Phase diagram” of energy E vs the nonlinear
strength AT?, showing transmitting (shaded) and nontransmit-
ting (unshaded) regimes of Egs. (2). See discussion in Sec. III.
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Equations (3) contains two coupled second-order
difference equations and represents a four-dimensional
nonlinear mapping in the phase space (x,_;,x,,
Yn—1>¥,). A particular problem that might arise for such
a nonlinear system involves the so-called Arnold
diffusion,’ ~® which is known to exist, in general, in non-
linear dynamical mappings with degrees of freedom
greater than two. As a consequence, one cannot guaran-
tee the existence of a particular bounded state (x,,y,)
over arbitrary distance in the nonlinear medium. Howev-
er, it can be shown that, because of the conservation of
probability current required in our problem, this four-
dimensional mapping can be reduced to a two-
dimensional one, and the possibility of the Arnold
diffusion can be ruled out.

In order to derive the reduced mapping, we write the
wave fugction and Eqgs. (3) in polar coordinates:

¢',,=r,,el " and
7, +1c08(AB, . ) tr, _jcos(AB,)=2f(r,), (4a)
r,+18in(A6, )—r, _;sin(A6,)=0, (4b)

where A6,=6,—6,_, and f(r)=—21r(Ar’+E). The
second equation defines an integral of motion for Eqs. (4):

J=r,r,_sin(A6,) , (5)

which has the physical meaning of probability current.
Following Bountis and co-workers in their study!® of a
model for colliding proton beams in the storage ring, we
introduce new variables:

2

n

J cot(AB,)

Uy

v | = . (6)

n

We obtain from Eq. (5) and Eq. (4a) the reduced mapping
S:

Uy -

=%(v3+]2) , (7a)

vnﬁlz_vn_unAl(un—l_'_E): (7b)

where its variables have been scaled by the nonlinear cou-
pling constant A: (u,v)—(Au,Av), and A is absorbed
into J: J—AJ. Besides E, the only other parameter in
mapping S is the current J which describes the strength
of the nonlinearity and can be determined from A and the
output of the transmission problem. The mapping S is
related to the transmission problem as follows. From the
wave functions at the boundary of the nonlinear sample,
namely ¥, and ¥y, one finds immediately 7y, ¥y,
Oy, and Oy ;. Using Egs. (5) and (6), J can be deter-
mined from uy, Uy, Vy+, and A, while vy is obtained
from Eq. (7b). (uy,vy) is then used to initiate the itera-
tions of S. Conversely, having obtained a series (u,,v, ),
one immediately has r, and A6, in [0,7] if J>O0 (or in
[m,27] if J<O0): thus 6,=—3N_ A6, .. This pro-
cedure enables us to study the wave functions in the non-
linear medium in terms of the (bounded) orbits of map-
ping S on the (u,v) plane, which is the Poincaré surface
of section of the corresponding nonlinear dynamical sys-
tem (with »n playing the role of discrete time). For the
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special case J =0, we use Eqgs. (3) directly, which is now
decoupled and becomes the nonlinear Schrodinger equa-
tion in the real domain, which we have studied else-
where.!*

It can be shown that the mapping S is equivalent topo-
logically to an area-preserving mapping. Indeed, S
preserves the local measure in the coordinates (Inu,,v,).
An important property of S is its reversibility, which we
now discuss. By writing S =S,S/, we factorize S into in-
volutions §, and S,:

w=Lw2472), 8(a)
Sll u

v'=v (8b)

u'=u, (8c)
Sz:

v'=—v—u(u+E). (8d)

S, and S, satisfy S =S3=1, so that S "'=S5,S,. The re-
versibility is evident in that Eq. (1) does not depend ex-
plicitly on n. Geometrically, the mapping S, has the
effect of “inversion” along the u axis about the (u >0)
branch of the hyperbola u?—v%=J? and S, represents a
reflection about the parabola v = —1u(u +E) along the v
axis (cf. Fig. 3). The two curves u=(v>+J?)!"? and
v=—1u(u+E) are the symmetry lines of S, and S,, re-
spectively, since each is actually formed by the set of
fixed points of the corresponding mapping.

The orbits generated by the mapping S on the (u,v)
plane can be either bounded or divergent. Only the
bounded orbits contribute to wave transmissions in our
problem. The bounded orbits are further organized into
a hierarchy of periodic orbits of different periods, due to
general theorems of Poincaré and of Birkhoff and the
Kolmogorov-Arnold-Moser (KAM) theorem.” Each
stable periodic orbit is surrounded by higher-order
periodic and quasi periodic orbits, whereas around the
unstable periodic orbits there are locally chaotic orbits.
The stability of a periodic orbit of period g is determined
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FIG. 3. Period-5 elliptic and hyperbolic orbits at E = —1.598
with their surrounding quasiperiodic and chaotic orbits on the
(u,v) plane. The solid lines are part of the symmetry lines of
mapping S; and S,.
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by its residue R, defined as R =1[2—Tr(Il1¢_,DS")],
where DS is the linearized mapping on the nth point of
the orbit. A periodic orbit is stable (elliptic) when
0 <R <1, while it is unstable when R <0 (hyperbolic) or
R >1 (hyperbolic with reflection). Notice that the
periodic orbit and its residue are functions of the parame-
ters in the mapping S. As an example, the period-1
periodic orbit is given by

u=—FE—2cosk , (9a)
v=—(E +2cosk)cosk , (9b)

with R =1—(E /2)cosk —2 cos’k. We show in Fig. 3 the
period-5 periodic orbit and the surrounding qausiperiodic
and chaotic orbits. The presence of the chaotic orbit is
closely related to the nonintegrable nature of the non-
linear dynamical mapping. Notice how the orbits are ar-
ranged about the two symmetry lines. In fact, the sym-
metry lines make it much easier to locate numerically a
periodic orbit. Since the starting point of the iterations
(up,vy) is always on the symmetry line of S, i.e,
uy =g +J*)? (cf. Sec. IID), it is sufficient to do a one-
dimensional search for a periodic orbit of given period.

III. RESULTS AND DISCUSSIONS

Now we describe how the orbits of mapping S contrib-
ute to the wave transmission in our problem. At the
right end of the nonlinear sample, the wave functions
representing the transmitted wave are simply the Bloch
waves [cf. Egs. 2)]: ¥, =Te™*, n > N. From Egs. (4) and
(5), we have J=ATZ%ink, uy=uy,.=AT? and vy,
=AT?cosk (we take A=1 in all the numerical calcula-
tions), so that (u,,vy) is on the symmetry line of S;. The
“phase diagram” in Fig. 2 is plotted by choosing E, J,
and (uy,vy) as discussed above, and by iterating the
mapping S. If the iterations give a bounded orbit (a
cutoff is used in the numerical procedure), then the point
(AT?,E) falls in the shaded region that we call the “‘stable
zone”’; otherwise it is in the unshaded region. We found
that the boundary separating these two regions is insensi-
tive to either the cutoff or the number of interactions as
long as a moderate number of the order 10? is exceeded.
The points (AT? E) corresponding to a particular stable
periodic orbit form a curve extending from the vertical
axis to a point on the boundary of the shaded region
where the orbit loses its stability permanently. Several of
the curves corresponding to the lowest-period orbits are
shown in Fig. 2. However, there are infinite periodic or-
bits present and each is surrounded by quasiperiodic and
chaotic orbits. These orbits, all together, produce the
branches of the “phase diagram.” There are also bifurca-
tions from a periodic orbit whenever its residue reaches a
rational number, producing higher classes of orbits which
do not show in Fig. 2. Remarkably, for the area-
preserving mappings, there are renormalization-group ar-
guments'® indicating that scaling relations exist among
the classes of periodic orbits when the parameters ap-
proach limiting values. As a consequence, the boundary
of the bounded orbits demonstrates fractal geometry.

The quantities of interest in the transmission problem
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are |R,|? and ¢, which can be numerically calculated by
iterating the mapping .S with a specified E and k for vari-
ous values of T (A=1). The calculations are performed
for the two typical cases indicated in Sec. I: one for
k=m/3 and E=—1 and the other for kK =27/100 and
E=—2.01, both with the same sample length N=200.
The results are summarized in a series of plots in Figs. 4
and 5, which we now examine. Figures 4(a) and 4(b)
show, on different scales, that the intensity of the incident
wave, |R,|?, is a single-valued function of the transmitted
intensity T2. Figure 4(c) presents similar information in
terms of the transmission coefficient ¢ as a function of T2
On the other hand, T2 has a multivalued functional
dependence on IROIZ, which is the source of bistability, or
multistability, in general. Close examination of the plots
reveals that such multivalued functional relations will re-
sult in resonances in the transmission, but there are also
interrupting smooth or monotonic regions accompanied
by narrow bursts of irregular variations, especially for
large T. Eventually, they become very irregular and ter-
minate when the wave function diverges and no transmis-
sion is possible. These seemingly complicated features
can be organized and explained in light of the “phase dia-
grams” in Fig. 2 and the general structures of the bound-
ed orbits. For fixed E and k in Fig. 2, T? can be in either
the shaded region or unshaded region; consequently,
there are total reflection gaps in the transmission region.
Roughly speaking, when T? is deep inside the shaded re-
gion, the transmission variations are relatively smooth,
while they become irregular as T approaches the bound-
ary of the shaded region.

Figure 4(d) establishes the connection between the
transmission and the orbits on the (Inu,v) plane, where
several low-period periodic orbits and surrounding quasi-
periodic orbits are generated from values of T2 in Fig.
4(a). Each of these orbits corresponds to a state in real
space of the nonlinear sample, fluctuating like a charge-
density wave. We should remark that among all orbits
the periodic ones form a set of zero measure, so that al-
most all of the contributions to the transmission come
from the bounded quasiperiodic or chaotic orbits. How-
ever, the behavior of quasiperiodic is determined by the
periodic ones they surround. For instance, the innermost
orbit in Fig. 4(d) represents one of the quasiperiodic or-
bits around the period-1 elliptic orbit (fixed point of map-
ping S) at T2=0.0139 [cf. Egs. (9) and Fig. 4(b)]. Such
orbits are responsible for the part of transmission in Fig.
4(a) below the point T?2~0.45. As T? increases, orbits of
similar type with larger size are now contributing to the
transmission, and |R,|? or ¢t would show similar smooth
or resonant variations. This tendency continues as long
as the quasiperiodic orbits remain in the basin of a partic-
ular periodic orbit. Similar behaviors are seen around
T?=0.47 and 0.71, coming from the orbits in the basins
of the period-5 and period-4 elliptic orbits, respectively.
However, when the relevant orbit switches between
basins as T2 is varied, one would expect the transmission
variations to behave differently. Moreover, in the vicinity
of the hyperbolic period orbits, such changes occur in a
violent and chaotic way, producing the irregular varia-
tions in the transmission. The region occupied by chaotic
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orbits grows wider as one moves away from the lowest-
order elliptic orbit. In Fig. 4(d) the chaotic orbits origi-
nating from the period-4 hyperbolic orbits are evident,
which give rise to the irregular “bursts” on the transmis-
sion bordering the region centered at T2>=0.71. Notice
that there are still quasiperiodic orbits surrounding
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chaotic orbits. In fact, such quasiperiodic orbits exist up
to the edges of the total reflection gap, and they prevent
the local chaotic orbits from diverging.

The resonant behavior of the states in the nonlinear
sample are shown in Fig. 4(e), where the probability den-
sity of the electron is plotted. All three states plotted
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FIG. 4. (a) Transmitted intensity T2 vs the incident intensity |R,|* at E=—2.01. The dashed line corresponds to T2=|R,|?,
which describes the linear transmission. (b) Enlargement of the section around the origin in (a). (c) Transmission coefficient ¢ vs T2
for E= —2.01. T? has the same range as in (b). (d) Some of the orbits corresponding to values of T2 in (a) on the (Inu,v) plane. (e)

Probability density in the nonlinear sample r? as function of n at E=—2.01 and T?=1.7X 1073 (

), 3.1X107* (— — —), and

50X1073 (— — —. ). These values of T? are also indicated by arrows in (b).
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FIG. 5. (a) Same as Fig. 4(a), but for E=—1.0. The total
reflection gap from T2=0.45 to 0.92 can be seen. (b) Transmis-
sion coefficient ¢ vs T? for E= —1.0. (c) Some of the orbits cor-
responding to values of T2 in (b) on the (Inu,v) plane. (d) Simi-
lar to Fig. 4(e), but for E=—1.0 and T?=1.0593, showing the
chaotic orbit around the hyperbolic period-2 orbit in (c).
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correspond to the quasiperiodic orbits around the
period-1 elliptic orbit at 72=0.0139, and their corre-
sponding T? values are indicated in Fig. 4(b). Since the
states have values of 72 smaller than 0.0139, and the
iterations all begin with 2 =r3 = T?, their probability
densities have minima at n =N=200. However, at the
left end of the nonlinear sample, the intensity of the
reflected wave is given by

1

R |P=—s-
IR 4 sin%k

[(wo—uy)t(uy—uyyy)

—2(v; —vpy4)cos(k)]=0 .

Thus, only the states that have an integral number of
complete resonances inside the nonlinear sample can
cause |R, 2=0, i.e., producing resonant transmission
with t=1. We also see how the special nature of the
transmission problem, i.e., that a relevant orbit is deter-
mined by the output rather than the input, and the
nonlinearity-induced resonances give rise to the multi-
stable property in the transmission. It is evident that as
the sample length N is varied while the remaining param-
eters are unchanged, the condition for resonant transmis-
sion will be changed. This results in shifts of the
resonant-transmission peaks on the z-versus-72 plot.

We now turn to Fig. 5, with E in the energy band of
the corresponding linear sample. Comparing the plots in
Fig. 5 with those in Fig. 4, we see that the two cases share
the properties discussed above. However, important
differences appear in the small-T'? part of their |R,|*
versus-T? relations [note the resonant behavior in Fig.
4(b) as T>—0; this behavior is absent in Fig. 5(a)]. The
reason for this is that we adopted the relation

= —2 cosk only for —2 < E <2, so that the period-1 or-
bit has vanishing u [cf. Egs. (9)], leading back to the
linear case. In fact, its corresponding state is described
by the Bloch waves, whereas for E < —2 Eqgs. (9) indicate
a finite-u, period-1 orbit. Hence, for the latter, decreas-
ing T? from 0.0139 has a similar effect as increasing T,
both carrying the orbits away from the period-1 elliptic
orbit. Consequently, one enters the truly nonperturbative
regime when E is below —2 such that the shaded region
moves away from 7 =0 (this becomes visible when
E < —2.45 in Fig. 2). There, a critical value of T or J
must be exceeded in order to have transmission. Such a
result is not surprising since the linear transmission is un-
stable when E is in the energy gap, and it happens that
the nonlinearity with A >0 stabilizes it for E below —2,
while enhancing the instability when E above 2 (reverse
situation occurs for A <0, i.e., for the holes). In Fig. 5(d)
we plot the electron probability density »2 as a function
of the sample length for the state associated with the
chaotic orbit around the period-2 hyperbolic orbit [see
Fig. 5(c)]. Such chaotic states will certainly generate
noisy responses in the transmission process, induced by
fluctuations in the values of the parameters of the system
such as E or k, which are affected by the potential
difference across the interfaces between the nonlinear
sample and linear leads, as well as the sample length N.
To show the latter, we plot in Fig. 6 the “power spectral
density” for the serial values of the transmission
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FIG. 6. Logarithmic “power spectral density” of a series of
values of the transmission coefficient as function of the non-
linear sample length, ¢ (), for the chaotic state at £ = —1.0 and
T?=1.0593, corresponding to the chaotic orbit around the
period-2 hyperbolic orbit in Fig. 5(c).

coefficient, #(N), corresponding to the above-mentioned
chaotic state. The spectra are the superposition of those
from the noisy component and the underlying quasi-
periodic components, where two prominent peaks in the
envelope centered at frequencies f~0.5 and ~0.05 are
due to the quasiperiodic structures in the orbit surround-
ing the period-2 hyperbolic orbit. In fact, this orbit alter-
nates between the basins of the period-2 elliptic orbit
[Fig. 5(c)], and also appears as repeated groups [Fig.
5(d)], giving rise to responses at the above-mentioned fre-
quencies, respectively. Finally, we note that in the above
analyses T2 is used as variable to measure the magnitude
of nonlinearity. Alternatively, one can discuss the
transmission properties by varying the Fermi level E
while keeping T constant. In view of the ‘“phase dia-
gram,” one can expect similar qualitative results in that
case.
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In conclusion, we have systematically studied the
effects of nonlinearity on the transmission of waves in
one-dimensional periodic lattices described by the tight-
binding Hamiltonian. The mechanism for the bistability
or multistability induced by the nonlinear periodic medi-
um can be well studied by analysis of an area-preserving
nonlinear mapping. The transmission coefficient exhibits
plateaus as a function of the incident intensity, due to the
presence of transmission gaps. We have shown the phase
diagram of the transmission problem in terms of energy E
and nonlinear coupling constant A, which has very in-
teresting structure. This structure is well understood in
our analysis of the nonlinear mapping. We have also
found that when such a nonlinear medium is illuminated
with radiation of well-defined energy in the gap of the
periodic system, increasing the incident power can switch
it from a state of low transmissivity to a state with
transmission coefficient equal to 1. Finally, the noisy
nonlinear responses belong to the category of determinis-
tic noise and would appear as intrinsic and reproducible
effects of the physical system. Our nonlinear system thus
yields a new mechanism for generation of noise. It will
be very interesting to check these theoretical results ex-
perimentally. On the other hand, we have studied here
only the much simplified physical model. It is our inten-
tion to study these properties in more realistic physical
systems in the future.
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